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Evaporation-kinetic studies have been made on droplets formed under equilibrium 
and nonequilibrium conditions. There are differences due to the physicochemi- 
cal features. 

Charged droplets are formed when gas bubbles break at the surface of an aqueous elec- 
trolyte solution [i], and their compositions differ from that of the solution [2]. This is 
of interest to the theory of atmospheric processes [3] and also for optimizing heat and mass 
transfer in industry [4]. Here particular interest attaches to how small drops evaporate 
from solid substrates. 

We used drops formed under nonequilibrium and equilibrium conditions; in the first case, 
the drops were made by bubble breaking at the surface, which involves highly nonequilibrium 
conditions, and the droplet formation speeds may be I0-i00 m/sec [5]. When a bubble breaks, 
a cavity remains in the liquid, from which a column is ejected that breaks up into droplets. 
The bubbles were produced from a single capillary in distilled water, which was 2.2 cm below 
the surface. The generation rate was 23-25 bubbles a minute. At 50 mm from the surface 
there was a PTFE plate, which had been cleaned by boiling in freshly prepared chromic acid 
followed by repeated washing in double-distilled water and boiling in it. In the second, an 
MSh-10 microsyringe (scale 0.2 ~I) was used in depositing a drop of distilled water slowly 
on the PTFE, the volume being the same. We compared results for identical-volume drops made 
under the two conditions. There were 40 such comparisons. The drops were selected and their 
parameters were measured in a saturated atmosphere in both cases. The height and base dia- 
meter were determined with an MIR-2 microscope (scale division 0.07 mm). 

Table i gives the polynomials fitted to the volume V and side surface S in terms of 
the time T; the polynomials have been fitted to minimum variance. The assumption was that 
the drops were spherical, which was checked from the criterion [6] Ref << a, in which a is 
the capillary constant. The variations in volume and surface for the bubble aerosol were 
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TABLE i. Formulas Fitted to Droplet Evaporation from PTFE 
(0.i M NaCI, 25~ 755 mm Hg, capillary diameter 1.6 mm) 

i Polynomial Variance Notes 

V = 4 , 4 8 .  I 0 - ~  - -  5 ,28.10-5"~ "-t- 3 ,38 .  lO-+c  2 - -  1 ,22 .10-77;  3 

S = 1 ,88 -10  - 2  - -  2 ,74 .  lO-3 ' r  ,-]- 2 ,23 .  I0-4,~2 - -  7 , 6 7 . 1 0 -  6.~a 

V ~ 5 , 1 7 . 1 0 - 4  - -  4 ,46 .10-5"c  -}- 9 ,69 .10-7"c  -~ 

S = 2, 1 0 . 1 0 - ~  - -  1 ,51.  I O - ~ T - -  1 , 1 0 . 1 0 - ' ~ 2  -} - 1 , 5 2 •  

>( lO-5"ca - -  4,19"~ ~ 

3 , 4 8 . 1 0 ;  

3 ,42 .106  

2 ,41 .105  

2 ,93 .  105 
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Fig. I. Radius at base of drop R (a) and height H (b) as 
functions of time T: I) bubble aerosol; 2) bulk phase; 
in min and R and H in Dm. 

different from those for the bulk phase. The evaporation details were derived from the varia- 
tion in the height H and base radius R. Figure i shows these. We used drops with identical 
parameters at �9 = 0 (20 comparisons). The bulk-liquid drop lifetimes always exceeded those 
for the bubble aerosol ones. Up to time T*, the wetting perimeter was maintained (only H 
decreased), but for T > T*, H and R both decreased. The R(~) with constant R for �9 < ~* is 
due to wetting hysteresis on the hydrophobic surface. As the substrate becomes more hydro- 
philic, T* decreases for both. For the bulk liquid, T* was larger than for the aerosol, so 
droplets evaporate more rapidly from a hydrophilic substrate. The increased rate for the 
bubble aerosol is due to the charge [7], since a charged drop has lower surface tension [8]. 
The surface tension is reduced because there is less molecular interaction in the surface 
layer, which reduces the work needed to transfer a molecule from the liquid to the gas. 

NOTATION 

V, drop volume; S, side surface area; Ref , effective radius; R, base radius on solid 
surface; H, height; ~, time. 
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